PRESENTATION 4.3.5

# The Propulsion System Is The Key to Airline-Like Operation of ETO Vehicles

Charles J. O'Brien

GenCorp Aerojet Propulsion Division

Sacramento, California

Operational Efficiency Panel
NASA Space Transportation Propulsion
Systems Technology Symposium
Penn State University - June 25-29, 1990

## Agenda

#### **Efficient Engine Operations**

- Steps for improved operability (ALS)
- •LCC/lb payload is figure of merit
- Current practice is major cost driver
- Single stage to orbit approach
- Propulsion & vehicle technologies have emerged to allow SSTO operation
- Conclusions for improved operability

#### **ALS STME Improved Operability**

#### **OEPSS Concern**

Contamination

#### Aerojet ALS Approach

| <ul><li>Hydraulic &amp; pneumatic actuation</li></ul>      | Electrical actuation for valves & TVC         |
|------------------------------------------------------------|-----------------------------------------------|
| <ul> <li>Accessibility</li> </ul>                          | Modularity access                             |
| <ul> <li>Lack hardware integ. &amp; commonality</li> </ul> | Commonality of lines, valves, bellows, seals  |
| •Gimbal system                                             | Gimbal system                                 |
| •High maintenance TPA                                      | Robust, low temp. turb., hydrostatic bearings |
| <ul> <li>Pressurization systems</li> </ul>                 | Autogenous GOX & GH2 HEX                      |
| •Helium gas purge                                          | Purge - He spin start & GOX inj. conditioning |
| <ul> <li>Preconditioning system</li> </ul>                 | No chilldown                                  |
|                                                            |                                               |

#### Operationally Efficient Propulsion System Steps In Progress

Filters & quality control

### Figure of Merit Is LCC/LB Payload



**ALS Trades Performance For Low Cost** 

## **Current Operational Cost<sup>1</sup> Is Labor-Intensive**



Innovate Utilizing Space Shuttle Experience

#### **Current Practice Is Major Cost Driver**

**Propulsion Systems & Shuttle Vehicle** 

- o 1970 technology and operations
- o Schedule & cost inhibit change

**ALS - One Approach To Reduce Cost** 

- o Trades performance for low cost
- Applies operations advances to current practice

## Multiple Stages Is Major Cost Driver

- o Cost of developing, servicing, maintaining, launching, tracking and recovery of numerous stages is high.
- o Single stage (SSTO) vehicle has highest potential for low LCC/lb payload for reusable systems.
- o For purpose of stimulating panel discussion let's examine SSTO vehicle operation goals.
  - Examine engine requirements to identify technologies & operation goals

## **Goal Is Fully Automated Operations**

#### Approach for Development

Dedicated X-Vehicle - Alt./Parallel Approach

- o No payload or schedule commitment
- o Used as test bed to improve operations
  - o Propulsion & vehicle systems
  - o Incremental improvements allowed

Single Stage Vehicle Offers Airline Type Operation

- o Condition monitored
- o Idle mode checkout
- o Pilot/computer-aided control

# TECHNOLOGY IMPACTS ON VEHICLE DRY MASS EFFICIENCY Payload 30 Tons



### LIFE CYCLE COST COMPARISONS



Total payload capacity

### Single Stage to Orbit Approach



SSTO Approaches Aircraft - Like Operation

#### How Do We Make An SSTO Propulsion System Operationally Efficient?

- o Utilize STGG to increase turbine life
- Utilize hydrostatic bearings to increase pump life
- o Optimize engine cycle to reduce turbine temperature
- o Utilize SDI thrust chamber technology
- o Use all welded joints (no leakage)
  - o self diagnostic automated condition monitor
  - o no observation points or LRU
- No gimbal thrust modulate engines for TVC

**Technologies Have Emerged To Allow SSTO Operation** 

## **Efficient Propulsion System Operations**

#### **Conclusions**

- Major advances are being made with ALS engine cost.
- Existing artificial interfaces do no permit improving ALS propulsion system operability.
- Must have dedicated X-ALS to continue improving operations.
- Minimum LCC/lb payload will eventually be achieved with SSTO operation.
- Must have dedicated X-SSTO to perfect engine, vehicle, and operations.

The Challenge is Here and We Must Meet It.